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Abstract-The paper presents an analysis of the effects of the absorption of radiation by fluids during 
measurements of their thermal conductivity by the transient hot-wire technique. The full integro-partial 
difierential equation governing the simultaneous conduction and radiation in a transient hot-wire cell is 
simplified by means of a small number of physically reasonable assumptions and solved numerically. The 
numerical solution has been employed to deduce the effect of radiation absorption on the wire temperature 
rise in measurements of three normal alkanes. Absorption of radiation is shown to produce changes in the 
wire temperature rise which are comparable with the best available resolution in its measurement and are 
therefore not directly discernible. Nevertheless, the contribution of radiative transport to the transient 
heating process means that the thermal conductivity derived from such measurements is systematically in 
error by as much as 2.5% at 75°C. A procedure whereby thermal conductivity data may be corrected for the 
effects of radiation is described and the correction factor given for n-heptane, n-nonane and n-undecane in the 

temperature range 35-75°C and the pressures in the range 0.1-500 MPa. 

NOMENCLATURE 

radius of inner cylinder [m] ; 
area of cylinder [m’] ; 
radius of outer cylinder [m] ; 
dimensionless radius of outer cylinder; 
exp y where y is Euler’s constant; 
heat capacity of fluid at constant pressure 
[J kg-’ K-l]; 
surface area element ; 
volume element ; 
emissive power [W m-'1 ; 
exponential integral; 
absorption coefficient [m-l]; 
Lagrange polynomial ; 
order of Lagrange polynomial ; 
refractive index ; 
number of grid points in annulus; 
successive roots of zeroth-order Bessel 
function of first kind; 
pressure [MPa] ; 
heat flux per unit length [W m- ‘I; 
radiant heat flux [W m-‘1; 
radiant heat flux gradient [W me3]; 
linearized heat fluxes [W rnw2] ; 
linearized heat flux gradients [W me31 ; 
radial coordinate [m] ; 
dimensionless radial coordinate ; 
radial coordinate of grid point for method 
of lines; 
time [s]; 
absolute temperature [K] ; 
volume of fluid [m’] ; 
zeroth-order Bessel function of the second 
kind ; 

* Author to whom correspondence should be addressed. 

Z, axial position [m] ; 
Z, difference of axial positions [ml. 

Greek symbols 
absorptivity; 
ratio of apparent to true thermal 
conductivity; 
decay function ; 
temperature correction [K] ; 
outer boundary correction [K] ; 
radiation correction [K] ; 
difference between apparent and true ther- 
mal conductivity; 

corrected temperature rise of wire [K] ; 
temperature rise of the fluid in the ideal 
model [K]; 

temperature rise of the wire [K] ; 
emissivity ; 

Planck’s distribution function [W mm3]; 
angular integration limit [rad] ; 
angle of incidence [rad] ; 
dimensionless temperature; 
dimensionless temperature rise; 

thermal diffusivity [m2 s- ‘1; 
thermal conductivity [W m- ’ K- ‘I; 
apparent thermal conductivity 
[W m-l K-l]; 
wavelength of radiation [m] ; 
fluid density [kg me31 ; 
Stefan-Boltzmann constant 
[W rns2 Ke4]; 
decay function ; 
azimuthal angle of spherical coordinate 
system [rad] ; 
polar angle between two points [rad] ; 
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polar angle in cylindrical coordinates 
[rad]. 

Subscripts 

0, equilibrium conditions; 

1, inner cylinder ; 
2, outer cylinder; 
A, -+ dV,, from inner cylinder to volume element; 
A, -+ dV,, from outer cylinder to volume element ; 

A, + dA,, from outer surface to element of inner 
surface ; 

I/ + dVi, from bulk of fluid to volume element; 
I/ -+ dA,, from fluid to surface element of inner 

cylinder. 

1. INTRODUCTION 

RECENT developments in both the theory [l-4] and 
practice [S-8] of the transient hot-wire technique have 
brought it to the stage when it offers the most precise 
method for the measurement of the thermal con- 
ductivity of fluids. Using the most refined instruments 
it has been possible to attain a precision of _tO.2% in 
the measurements in both gas and liquid phases 
[6-131. However, only in the cases of dilute and 
moderately dense gases has it been possible to identify 
this precision with the accuracy of the reported 
thermal conductivity data [6, 131. For other fluids, 
specifically those which absorb electromagnetic radi- 
ation, the theoretical description of the measurement 
process has been less than complete, and for such 
systems it has been necessary to accept that the 
thermal conductivity data may be burdened with a 
systematic error of the order of 1% [ll, 143. 

plate arrangements [17-231. Even in this relatively 
simple case the exact solution of the energy equation 
given by 1171 is too complicated for routine analysis of 
experimental data, although it does confirm the exis- 
tence of a significant effect upon thermal conductivity 
measurements. On the other hand, approximate treat- 
ments such as that of [18] based on the Rosseland 
diffusion approximation [20] are not generally quanti- 
tatively correct. In the transient hot-wire method the 
essential measurement is that of the temperature rise of 
a thin wire immersed in the fluid as a function of time 
following the stepwise initiation of a heat flux within it 
[l). By means of a suitable design and a careful choice 
of operating conditions [S-7] it is possible to arrange 
that the instrument operates in very close accord with 
the simplest mathematical treatment of it. Among the 
idealizations of this mathematical treatment is the 
assumption that the heat transfer from the wire takes 
place solely by conduction. In order to account for this, 
as well as the other departures of the experimental 
arrangement from the ideal, small, additive corrections 
must be applied to the observed temperature rises of 
the wire so that the data can be interpreted with a 
simple working equation [l]. Explicit expressions for 
many of these corrections have already been given 
[l-4] including that for the radiation heat loss, 6T,, 

when the fluid is transparent to radiation [l]. In most 
instruments used with transparent fluids, this cor- 
rection is negligible, amounting to less than 5 x 
10s3% of the total temperature rise [S]. However, in 
the case of absorbing liquids an equivalent expression 
for the correction is not available and it cannot be 
assumed that the effect is similarly negligible judged on 
the evidence for the steady state, parallel plate case. 

Because the thermal conductivity of a material can 
only be practically determined by the imposition of a 
temperature gradient within it, there is, in principle, 
always a radiative contribution to the measured total 
heat flux. In the case when the material is transparent 
to the radiation and is confined between two surfaces 
the radiative contribution to the heat flux may be 
evaluated independently of the conductive contri- 
bution, either in a separate experiment in the absence 
of a medium between the two surfaces, or by a 
relatively simple calculation [ 151. However, in the case 
when the fluid absorbs some of the radiation, the 
radiative contribution to the heat flux is coupled to the 
conductive heat flux through the medium itself and 
hence cannot be determined in an experiment in which 
the medium is absent. Furthermore, direct calculation 
of the radiative heat flux, which depends upon the 
instrument employed for the measurement, becomes a 
very much more complicated problem. It is likely that 
at least some part of the large discrepancies between 
thermal conductivity data for absorbing fluids ob- 
tained in different types of instrument [16] may be 
attributed to the effects of radiative heat transfer. 

There have been a number of attempts to carry out 
an analysis of the process of simultaneous conduction 
and radiation in an absorbing fluid for the transient 
hot-wire instrument [21-231. All of the approaches 
have been founded on simplifications of the energy 
equation, usually related to somewhat artificial assump- 
tions about the optical thickness of the medium at 
different radial positions [23]. The predictions of these 
approximate analyses have not been confirmed by 
subsequent measurements in transient hot-wire 
measurements of thermal conductivity [7, 8, 11, 14). 
The present paper provides a more rigorous analysis of 
simultaneous radiation and conduction in a transient 
hot-wire instrument than has been given before. The 
analysis is based on a numerical solution of the full 
energy equation describing the process. It is intended 
to provide a means whereby measurements of thermal 
conductivity performed in such an instrument may be 
corrected for the effects of radiation, so that the high 
precision of the experimental technique may be 
translated into a comparable accuracy. 

2. THE MODEL 

The majority of studies of the contribution of The ideal model ofthe transient hot-wire instrument 
radiation to heat transport in absorbing media have consists of an in~nitely long line source of a radial heat 
been confined to steady state conditions for parallel flux, 4. initiated at time t = 0, immersed in a fluid of 



infinite extent with temperature independent physical 
properties, initially at a temperature T,. It is presumed 
that all the heat loss from the wire occurs by con- 
duction, and it can then be shown that the temperature 
rise of the fluid at a radial position r conforms to the 
equation [l] : 

AT&, t) = & E,(r’/4tcf). (1) 

For the small values of r*/Kt relevant in most instru- 
ments, this reduces to 

AT&. t) = & ln(4Kt/r2C). (2) 

In practice, the heat source is a thin metallic wire of 
radius, a, and finite length, immersed in a fluid with 
temperature dependent physical properties, which is 
confined in a cylinder of radius b. The wire is also / 

employed as a thermometer in the measurements and 
its tem~rature rise, AT,, is identified with that of the 
fluid in contact with it at the radial location r = a. 
Owing to the differences between the real system and 

acll 
the ideal model of it, the temperature rise AT, differs FIG. 1. The model of the transient hot-wire cell adopted for 

from AT, by a small amount. However, because each 
the determination of the radiation correction. 

of the departures from the ideal model may be 
rendered small by an appropriate design, the cor- 
responding corrections may be treated independently 
in the formulation of the theory of the method and 

emission and absorption of radiant energy by the fluid 

viewed as small additive corrections [l]. 
and the bounding surfaces is assumed to be valid. In 
addition to the effects of radiation, the present model 

Thus we write departs from the ideal by virtue of the finite outer 

ATi, = AT, f C6Ti (3) 
boundary and the presence of a non-zero diameter 

E heat source. The inclusion of the latter two features 

where the 6Ti represent the various additive cor- 
simplifies the numerical procedures required for a 

rections. Among these, adopting a notation consistent 
solution of the problem, and because account may 

with reference El], 6T, denotes the correction to be 
readily be taken of their effects, it is still possible to 

applied to the measured temperature rise to eliminate 
determine the consequences of radiation absorption 

the effects of radiation. One purpose of the present 
alone. 

analysis is to evaluate the correction ST, for absorbing 
liquids. Because the remaining corrections, GT,(i# 5), 
have already been evaluated [l-4], it is convenient to 

2.1. The energy equation 

define a temperature rise AT’, which is the experimen- 
Applying an energy balance to the elemental volume 

tal temperature rise corrected for all effects except 
of fluid dl/, in Fig. 1, we obtain the equation 

radiation, by the equation 

AT’ = AT, + c 6T,. (4) 
I 

i+5 

The model adopted for the determination of the 
radiation correction is shown in Fig. 1, which also + Qk+,v, - 4K,Ei. (5) 

defines the cylindrical polar coordinate system em- 
ployed. The heat source consists of an infinitely long The first term on the right of this equation represents 
cylinder of radius a with negligible heat capacity and the conductive heat flux gradient whereas the second, 
infinite thermal conductivity. The fluid, which has third and fourth terms represent the gradients of the 
tem~rature-independent physical properties, is con- one-way heat fluxes from the remainder of the fluid 
fined in the annuius between this cylinder and an volume, and the inner and outer surfaces of the annulus 
infinitely long outer cylinder of radius b. The bounding respectively, to the volume element. The final term 
surfaces of the fluid are assumed to be grey and the represents the total outgoing radiative heat flux from 
ffuid itsetf is assumed to be isotropic, grey and non- the volume element dV,. 
scattering. The conductive and radiative heat fluxes are At the surface of the inner cylinder (r=a) the 
assumed to be additive and Kirchhoff’s Law for boundary condition for the solution of equation (5) 

Effect of absorption of radiation on thermal conductivity measurements 663 
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appropriate to the present model takes the form 

r = u, t 2 0, 

where dff, is an element of area on the surface of the 
inner cylinder and the second and third terms repre- 
sent the one-way radiant transfer to this element from 
the outer surface and the fluid volume respectively. 

At the surface of the outer cylinder we impose the 
condition that the temperature remains constant at its 
initial equilibrium value 

T(b, t) = T,, O<t< Xl. (7) 

This is jwst the same condition that has been employed 
to deduce a correction to the ideal model of the 
apparatus arising from the presence of a finite outer 
boundary in the pure conductive case [i]. 

The initial condition for the solution of the equation 
is provided by the requirement of thermal equilibrium 
so that 

7’ = T,, O<r<b, t $ a. (8) 

Each of the radiative terms in equations (5) and (6) may 
be written explicitly using standard procedures [24] so 
that equation (5) becomes 

Applying similar methods the boundary condition (6) 
may be written 

In these equations 
I 

7(r) = exp - 
(s 1 

Kdr . (11) 
0 

In addition, o1 represents the angle between the 
normal to an element, dA,, of the surface of the inner 
cylinder and the vector r1 whereas 8, is a similar angle 
at the element dA, of the outer cylinder, The symbol ri 
represents the fraction of energy falling on a surface 
element which is not absorbed. 

In order to proceed it is desirable to introduce a 
small number of further simplifications into the model. 
In each case the additional approximation is con- 
sistent with the desire to obtain a small, lst-order 
correction to the ideal model of the transient hot-wire 
instrument. Thus, it is assumed that the absorption 
coefficient of the fluid is independent of temperature so 
that 

Ki = Kj = K and t(r) = exp - Kv. (12) 

First this is consistent with the assumption that the 
remainder of the physical properties of the fluid are 
temperature independent, and secondly, the tempera- 
ture changes involved in measurements are only of the 
order of 5 K so that the error introduced should, in any 
event, be very small. It is further assumed that the 
surface of the outer cyljnder of the instrument is black 
so that C, = a2 = 1, w, = 0 and 

Because in practice the thermal conduction wave 
from the heat source does not penetrate to the outer 
cylinder of the cell, and because most of the radiant 
energy is absorbed in the fluid before it reaches the 
outer cylinder, this approximation is thought to 
introduce a negligible error. Finally, the absorbtivity 
and emissivity of the inner cylinder are assumed to be 
equal and temperature independent so that 

I:~ =L a, = I:. (13) 

Introducing these assumptions into the energy equa- 
tion we obtain 

+K E, CQS QW.4 
- _I-- - 4KE, 

1 

I[ r= (14) 

where 

K’ 
Q Y-dAt = n -. j 

.Q(r)cos @,dVj 

2 
(15) 

v 

and 

1 
Q 

.f 

E, cos 62, cos B,sfr)dA, 
‘4wlAt = ; I.-- 

r’ 
p. ($6) 

At 

At the same time the boundary condition (6) becomes 

+ Qr+,,+ - n2aT4 ). (17) 

2.2. 7%~ r~d~~t~~~ ~~~tr~~~t~~~~ to tite heat ,fiux 
The evaluation af the surface and volume integrals 



.d L2a 

FIG. 2, Coordinate systems for the evaluation of the radiant 
heat fluxes and their gmdients. 

which occur in the radiative contributions to the heat 
flux is most conveniently performed with the coor- 
dinate system defined by Fig. 2. Here (ri, zi, $J are the 
coordimates of point Pi in a ~~~dr~~a~ system centered 
on the axis of the inner cylinder. On the other hand fr> 
0, #) are the coordinates of a spherical polar system 
centered on the point P,. With the aid of the definitions, 

Qb = t@j - Ij!, (18) 

arid 

z = zj - z<, (1% 

which relate the cylindrical coordinates of two points 
P, and Pi, each of the integrals in equations (14)-(17) 
may he expressed in terms of the coordinates fr, Z, io). 
The eqzmtions for the ~~~nrmation ineh~ding the 
facobian a+* 8, +)@fr, Z, @)are given in the ~~~nd~x. 

From equation (15) we obtain 

4k’ ” b v,, 
Q -- V-U, - 

sss n 0 iI0 

and Fig. 3(a) iflustrates a section af the region of the 
fluid contributing to the integrals. 

The transformation of equation (16) leads to the 
result that 

where 

pb = [bZ + a2 - 2abcos?O + PJf”, 124) 

vll2 = cm- l (u/b), (25) 

and Fig. 3(b) illustrates a section of the ~~~trib~~i~g 
region of the outer surface. The flux gradients of 
equation (14) may also be written in the same coor- 
dinates. Thus the contribution owing to radiation from 
the bulk of the Ruid at a volume element situated ELM a, 
becomes 

and Fig. 3(c) illustrates a section of the contributing 
portion of the fiuid. 

For transport from the surface of the inner cylinder 
to a volume element at Pi we find 

Q&v, = 4+CE, + O-E)CQV-+U, + &z+f] 

X 
(ri cos 4tr- a)t(rJd@dZ , 

4 

t283 

fdl fd 

Frcz. 3, The regions of&id and bounding surfaces contribut- 
ing to radiant heat fluxes and heat Rux gradients. Volumes of 
the fluid contributing are shown hatched, surfaces contribut- 
ing are indicated by thick lines. (a) QVddA,; (b) QA2_.tIA1; 

(c) gV-,dV,; W &,-wi k) Q’,,-+dV; 
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where 

r, = [rf + a2 - 2ar, cos (0 + Z2] l l2 (30) 

and Fig. 3(d) shows the section of the inner cylinder 
contributing to the integrals. 

Finally, the contribution from radiative transport to 
the volume element at P, from the outer surface A,, 
may be similarly transformed, 

KE,b = 
Q&V, = K 

ss 

qli+qll (b-~icos~~(~~)d#dZ 
3 

0 0 re 

(31) 

where 

re = (r: + bZ - 2ri b cos Q) + Z*) (32) 

and Fig. 3(e) defines the limits of integration for the 
contributing surface of the outer cylinder. 

Equation (14), together with the definition 

Ej(rj, t) = n%T4(rj, t) (33) 

and the preceding results for the radiative flux gradi- 
ents is an integropartial differential equation for the 
temperature rise of the fluid as a function of time and 
position in a transient hot-wire instrument in which 
the fluid is absorbing. The solution of this equation, 
when compared with the solution for a non-absorbing 
fluid, yields directly the effect of radiation on the 
system. An analytic solution to equation (14) subject to 
the boundary and initial conditions (7), (8) and (17) is 
not feasible without further assumptions so that it has 
been necessary to obtain a numerical solution. 

3. METHOD OF SOLUTION 

3.1. Linearization 
In order to carry out the numerical solution of the 

energy equation we first transform to the dimension- 
less variables 

0 = T/T,, R = r/a and B = b/a. (34) 

Secondly, because the energy equation (14) is non- 
linear we have found it advantageous to linearize it. 
This second procedure is not essential to the process of 
obtaining a numerical solution because methods for 
solving such non-linear equations are available. How- 
ever, the computational effort required for the pre- 
sent problem is extremely large. Furthermore, the 
linearization is consistent with our aim of attaining a 
M-order correction arising from the effects of radi- 
ation absorption, and is justified by the fact that the 
temperature rise in the fluid is typically only a few 
degrees Kelvin. Hence, if we define a dimensionless 
temperature rise by the equation 

then 

~+LO_l. (35) 
0 

0 << 1 

and we can write 

04 = 1 + 49 (36) 

so that the dimensionless, linearized energy equation 
becomes 

- 16KnZaT@(Ri)] 

whereas the boundary conditions are 

(37) 

9 -= _ 
2nT, 

_““[& 
To 

AZ-dA, + k-d,,1 

+ 4&raT;b(l), (38) 
and 

d(B) = 0, 0 < t G cr_, (39) 

and the initial condition is 

G(R) = 0, t < 0, 1 < R < B. (40) 

The same procedures may be applied to the one-way 
radiation heat fluxes and gradients to yield 

Q” V-d,41 = 

X 
Rj@(Rj)[Ri cos @ - l]G(R,)dQdRjdZ 

RI 
9 (41) 

&+dA, = O% (42) 

by virtue of boundary condition (39), 

1fjn2po~4 x B ~,,+k 

&‘+dV, = ~ ’ 
sss 0 IO 

X 
Rj~~Rj~~(~~, (43) 

Qkpd”, = D 
ss 

VI, (Ri cos Q, -l$R,)d@dZ (44) 

0 0 

and finally 

@A,+dV, = o (45) 

again because of the boundary condition (39). 
In these equations we have employed the definitions 

S(R) = exp - KaR, (46) 

and 

D = ‘; [4m2aT$3(l) 

f (1-4@Y-dA, + Q,.i-d.& (47) 

together with obvious definitions of R,, R,, R,, R, and 
R,. The tilde denotes that the radiation heat fluxes and 
gradients have been linearized. 
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3.2. Numerical methods 
The first step in the numerical solution of equation 

(37) involves the conversion of the multidimensional 
integrals in the expressions for the radiation heat fluxes 
and gradients into algebraic series by means of a 
suitable quadrature procedure. For each integral we 
have employed Gausstegendre quadrature for a 
finite interval [25], even for the integration over the 
axial coordinate 2 which, in principle, extends to 
infinity. The latter procedure is necessary to avoid 
under8ow in the machine calculations at the pivot 
points of quadrature formulae for an infinite interval 
caused by the rapid decay of the integrand. The finite 
upper limit ofthe integration over the axial coordinate, 
Zli,,,, was selected by numerical experimentation ; it has 
been found that a value of 

is generatiy satisfactory. For the liquids considered in 
this study this limit corresponds to a vertical distance 
of about 5 cm. 

The approbation of the quadrature formulae reduces 
the energy equation (37) to a linear, partial differential 
equation which has been solved by the Method of 
Lines [26]. This method involves the conversion of 
the partial differential equation to a set of coupled 
ordinary differential equations. To implement the 
method in this case, the annular space between the two 
cylinders is discretized into a number, N, ofpoints Ri at 
each of which the temperature rise of the fluid at a time 
t is denoted by B,(r). The function @(R. tf is then 
represented by a series of approximating Lagrange 
~lynomials in the spatiaI coordinate, L,(R), so that 

where 

L,(R) = i (R-R,) fi (Ri-RI), j#i 
j-l j=l 

and (m-- 1)is the degree of the polynomial,,and m < N. 
Tbe subscript, a, on the function @ denotes it is an 
approximation to the solution d(R, t). Because L,(RJ 
= t and L,fRj) = 0,j # i, RI f 0 then 

O,(R, t) = a,(t) 

and the polynomial passes through the given data 
points. The partial derivatives of 6633, tf may also be 
approximated by the derivatives of the polynomial at 
the spatial location Ri 

and 

where the prime denotes differentiation of the poly- 
nomial with respect to R. Introduction of these results 

into the energy equation (37) at each spatial location 
leads to a coupled set of N ordinary differentiai 
equations in the time domain. In the present work, the 
fundamental form of the temperature profile in space is 
known to be that corresponding to the ideal model for 
pure conduction [equation (I)] because the radiative 
perturbations are small. Consequently, the grid points 
R, for the method of lines have been chosen according 
to the scheme 

in order to obtain a finer grid spacing near to the inner 
cylinder which represents the most important region of 
the fluid for the effects considered. The coupled 
ordinary differential equations obtained by the fore- 
going method are stiff and they have therefore been 
integrated using an algorithm developed by Gear [27] 
and ~jndmarsh [ZS], which allows both variable order 
of integration and variable step size. 

During the integration of the ordinary differential 
equations in the time domain it is necessary to evaluate 
the linearized radiant heat fluxes and heat flux gradi- 
ents according to the quadrature formulae approxi- 
mating the integrals. Because the pivot points of the 
Gauss-Legendre scheme employed do not coincide 
with the grid adopted for the method of lines it is 
necessary at each step to interpolate in the grid to 
determine the temperature rise of the fluid at the pivot 
points. For this purpose a .5-point interpolation 
scheme proposed by Akima [29] has been used. Some 
of the integrals contained in the radiant heat fluxes and 
their gradients are time independent and for these, 
which need only be computed once, a 16 point 
Gauss-Legendre scheme was used. For the remainder 
of the integrals, which must be continually recai- 
cutated at each step, a 3- or 5-point quadrature was 
employed and was found to be sufficiently rapid and 
accurate. 

3.3. Precision of the numerical solution 
For each iterative step in the numerical procedure 

outlined above it has been found that a convergent 
limit corresponding to a relative error of 1OF6 repre- 
sents a satisfactory compromise between accuracy and 
the need to avoid machine round-off errors. The 
repining parameters of the numerical method also 
represent a compromise between the need to limit the 
computation time and the need to maintain suffcientty 
high accuracy. Appropriate values of the order of 
coupling in the ordinary differential equations, m, and 
the number of grid points in the annular space, N, have 
been determined by numerical trials. For this purpose 
it is desirable to use an analytic solution to the problem 
as a reference, because this also allows the accuracy of 
the numerical solution to be assessed. The only 
analytic solution which is available is that in which the 
effects of radiation are negligible, that is, for a model of 
the instrument which contains an outer boun~ry but 
in which the fluid is not absorbing. This soiution for 
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the temperature rise of the fluid at the surface of the 
inner cyiinder takes the form [I] 

6T 
@I, t) = yi!. - _$ 

0 0 

where for sufficiently large values of tct/a2, AT,, is given 
by equation (2). The correction JT,, which accounts 
for the departures of the apparatus from the ideal 
model because of the presence of the outer cylinder is 
given by [I J 

for the large values of b/a characteristic of all 
instruments. 

In order to compare the numerical solution with 
that of equation (48), we have carried out calculations 
for a fluid possessing physical properties close to those 
of n-heptane. The conditions chosen for the calcu- 
lation, 300 K and a pressure of 0.1 MPa, are simitar to 
those employed in recent measurements of the thermat 
conductivity of n-heptane, and they and the appro- 
priate physicat properties of the fluid are collected in 
Table 1. In order to simulate conditions in which 
radiation plays an insignificant role, both the emis- 
sivity of the inner cylinder and the absorption 
coefficient of the liquid were set to very small values in 

these calculations, but the algorithm employed for the 
calculations was in every respect identical to that 
described earlier. 

Following a number of trial calculations of this type 
[30] with different parameters for the numerical 
solution it was determined that third order coupling of 
the differential equations combined with 301 grid 
points in the annular space led to adequate precision. 

Figure 4 displays the deviations between the analytic 
solution of equation (48) and the numerical solution 
for these parameters, in the range of times 0.1-1.0 s of 
interest ex~rimentaIly. The deviation is typically only 
HUK$,. This agreement is taken as evidence of the 
precision of the calculation and because the aigorithm 
employed is identical when radiation effects are signi- 
ficant, it isexpected that theaccuracy of the results will 
be similar. Unfortunately, no more direct confirmation 
of this contention is possible. 

4. RESULTS 

In order to relate the present calculations of the 
effect of radiation absorption asclosely as possible to a 
real experiment, we have applied the algorithm de- 
scribed earlier to a transient hot-wire apparatus 
employed for thermal conducti~ty measurem~ts on 
three alkanes, n-heptane, n-nonane and n-undecane f7, 
12]. This particular apparatus consists of a platinum 
wire of radius a = 3.9 pm on the axis of a cylinder of 
radius b = 4.95 mm, and was used at the three 

Table 1. Physical properties of the alkanes and values of the experimental parameters employed for the evaluation of the effect 
of radiation absorption 

Tom n A/mW m-l K-’ p/k mA3 CdJkg-‘EC-’ Fqm-’ q/Wm’-’ 
- 

300 1.385 128.2 
308 1.385 144.0 
323 I.385 138.3 
348 I.385 137.1 

308 1.385 233.5 
323 1.385 233.3 
348 1.385 232.5 

308 1.405 146.1 
323 1.405 143.6 
348 1.405 141.3 

308 L.405 231.3 
323 1.405 231.4 
348 1.405 231.5 

308 1.418 147.8 
323 1.418 146.0 
348 1.418 140.8 

308 1.418 215.3 
323 1.418 217.5 
348 1.418 214.6 

n-heptane, 50 MPa 

697 
716 
704 
698 

n-heptane, 500 M Pa 

846 
841 
834 

n-nonane, 50 MPa 

743 
724 
727 

n-nonane, 500 MPa 

870 
866 
859 

n-undecane, 50 MPa 

760 
753 
739 

n-undecane, 500 MPa 

864 
863 
855 

2252 1070 1.0 
2826 1070 0.6# 
2826 1070 0.64 
2826 1070 0.63 

2826 1070 0.66 
2826 1070 0.64 
2826 1070 0.63 

2200 
2200 
2200 

2200 
2200 
2200 

2250 1150 0.89 
2250 1150 0.86 
2250 1150 0.84 

2250 1150 0.90 
2250 1150 0.87 
2250 1150 0.84 

1120 
1120 
1120 

1120 
1120 
1l20 

0.66 
0.64 
0.77 

0.66 
0.64 
0.77 

__I-- -.~ 
For all catculations: inner cylinder radius, cz = 3.9pm; outer cylinder radius, b = 4.95 mm; wire emissitity, E = 0.037. 
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FIG. 4. Deviations of the numerical solution from the analytic 
solution for 3rd-order coupling with 301 points. 

temperatures 35,SO and 75X, over a range of pressures 
from 50-500 MPa. 

In order to estimate the effects of radiation absorp- 
tion on these measurements, we have used the 
foregoing algorithm to compute 6(1, t) for several sets 
of conditions representative of those encountered in 
the measurements. For this purpose, we have em- 
ployed heat fluxes, q, in the calculations similar to 
those used in the measurements, as well as the physical 
properties of the alkanes appropriate to the thermody- 
namic state involved. The properties of the fluids and 
the characteristics of the instrument are all collected in 
Table 1. Among the physical properties of the fluids 
required for the calculation are the refractive index and 
an absorption coefficient, K. For the former we have 
employed values measured at 25°C in all cases. For the 
latter, we have employed a mean absorption coef- 
ficient, defined by the relation 

K= -tin 

x (I ,JZ”,)e,dh 

[ 1 s O 

s 

co (50) 
c,,dA 

0 

and determined directly at room temperature in an i.r. 
spectrophotometer [30]. This mean absorption coef- 
ficient is not the same as the more usual Planck mean 
extinction coefficient [24] but is appropriate for the 
present purpose if the fluids are treated as grey. Values 
for K and n under other conditions are not available, so 
that those appropriate to ambient conditions have had 
to be used in other thermodynamic states. 

The effect of radiation absorption on the wire 
temperature rise is quantified by the definition 

6T, = ATi, - 6T, - AT. (51) 

Here, ATi, is the temperature rise of the inner cylinder 
according to the ideal model of the instrument [equa- 
tion (2)], 6T, is the correction owing to the outer 
boundary of the fluid [equation (49)] and AT = 
To6(l, t) is the computed temperature rise when 

I- 

,- 

? 

e 
0 I I I 

0 0.L 08 1.0 
TIME,t/s 
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FIG. 5. The temperature correction, 6T,, owing to radiation 
absorption in n-heptane. l T, = 308 K; P = 500 MPa; 
n T0=323K,P=500MPa;~T,=348K,P=500MPa. 

radiation absorption occurs. According to this de- 
finition 6T, can also be identified as the correction to 
be added to the temperature rise observed experimen- 
tally in an absorbing fluid to account for the effects of 
the absorption and thereby recover the ideal tempera- 
ture rise ATi,. 

Figure 5 contains a plot of 6T,(t) for the simulation 
of measurements in n-heptane at three temperatures. 
In each case the total temperature rise of the wire was 
of the order of 5 K. The effect of radiation is to produce 
a positive value of 6T,, increasing with time in an 
approximately linear fashion to about 0.007 K or 
0.15% at a time of 1 s. Similar, but slightly greater 
effects are found in the cases of n-nonane and n- 

undecane. The effects of radiation absorption on the 
fluid temperature are therefore small and there is no 
sign of the rather large effects suggested by the work of 
Saito and Venart for toluene [23]. In general, the effect 
increases with absolute temperature and with the 
absorption coefficient of the liquid in the range studied. 
Despite the small magnitude of the effect of radiation 
on the temperature rise of the wire, its systematic 
nature has significant consequences for the measur- 
menent of thermal conductivity which are discussed in 
the next section. 

5. APPLICATION TO TRANSIENT HOT-WIRE 
MEASUREMENTS OF THERMAL CONDUCIJVITY 

The thermal conductivity of a fluid is determined 
from a set of data points (ATw(ti), ti) obtained in a 
transient hot-wire measurement by application of 
linear regression to the corrected data set (ATid( 
In ti) where [l, 61 

ATi, = AT, + C6Tj 
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and, according to equation (21, 

/1 = ; [ l/(dATiJd In c)]. (53) 

If the complete set of corrections 6T, is available this 
procedure should yield the true thermal conductivity 
of the fluid at an appropriate reference temperature 
[l]. Thus, in principle, the correct application of the 
preceding results would be to compute the correction 
6T, for each experimental point for each run and to 
combine the results with the measurements of AT, 
according to equation (52). However, the enormous 
computational effort required (about lo5 words of 
storage and 750s of C.P.U. time on a CDC 7600 
computer for a single run) this is evidently an impracti- 
cal approach. Thus, whereas the present calculations 
of 6T, may serve as a test of later and simpler analytic 
solutions to the problem, they cannot be applied 
directly to thecorrection ofexperimental observations. 

In order to discuss alternative methods of applying 
the radiation correction, we first consider the magni- 
tude of the effect in a different manner. According to 
equation (4) AT’ represents the temperature rise of the 
wire corrected for all departures from the ideal model 
except that arising from radiation. If the set of data 
points (AT’(t,), In ti) obtained in an experiment are 
subjected to linear regression, then the time de- 
pendence ofhT,(t) leads to a small curvature in the line 
A.T’vs In ti. Figure 6 contains a plot of the deviations of 
the points (AT’(Q, In ti) from a straight line fitted to 
data generated by the simulation of a measurmeent in 
n-heptane at 348 K. The fit has been carried out over 
the range of times 0.1-1.0 s usually employed in 
measurements. The systematic curvature of the de- 
viation plot corresponding to the curvature of the line 
(AT’vs in t)can be seen to amount to only 0.05% of the 
temperature rise even in this worst case. Because, in 
even the most precise thermal conductivity instru- 
ments, the resolution of the temperature rise measure- 
ments is not better than &0.05%, such a curvature 
could not be discerned experimentally. This finding is 
consistent with the experimental observations of 
Menashe and Wakeham [7]. On the other hand, if the 
average slope of the plot of A7” vs In t is obtained from 
a least-squares fitted straight line the apparent thermal 
conductivity, defined by the equation, 

I aPP = $ [l/(dAT’/d In t)], (54) 

is found to be 

1 aPP = 139.8 mW m-’ K-’ 

which is greater by 1.9% than the true value listed in 
Table 1. It must therefore be concluded that although 
the systematic effect of radiation on the wire tempera- 
ture rise cannot be distinguished from the random 
error of measurements it introduces a systematic error 
into the thermal conductivity derived. 

These observations suggest that the correction to 
the data to account for radiation absorption should be 

applied to the slope of the fitted straight line, or 
equivalently, the thermal conductivity, rather than to 
the individual temperature rises. We therefore define a 
ratio of the apparent and real thermal conductivities 
as 

p=“““‘=1++ 
A A 

Here, “lapp is the apparent thermal conductivity of the 
fluid determined according to equation (54) and Iz the 
true thermal conductivity. In general the ratio fl 
depends upon the characteristics of the instrument 
employed for the measurem~ts, such as its dimen- 
sions, the emissivity of the material of the inner 
cylinder, the heat flux employed for the measurements, 
and the time range over which measurements are 
made. In addition, the ratio depends upon all the 
physical properties of the fluid, for example, the 
thermal conductivity, density, heat capacity, refractive 
index and the absorption coefficient as well as upon the 
absolute temperature of the measurement. 

For one particular experimental installation, the 
number of instrumental variables which need to be 
considered is reduced to just the heat flux and the time 
range employed. In practice, for any particular liquid, 
measurements along an isotherm as a function of 
density are generally carried out at a constant heat flux 
and in the same range of times so that calculations of /I 
need only be performed to account for the varying 
physical properties of the fluid along each isotherm. 
Furthermore, because there is very little information 
available concerning the refractive indices and absorp- 
tion coefficients of liquids except under ambient 
conditions the only recourse is to maintain these values 
constant. Thus the best that can be done at present is to 
compute the ratio /I for each liquid to be studied at 
each isotherm as a function of thermal conductivity or 
equivalently density. If the calculations are restricted 
to the minimum set of those at the extremes of the 
density range along each isotherm for each liquid this 
procedure reduces the computational effort required 
considerably and brings it within practical bounds. 

w 
0 -0.1- 

0.1 0.25 05 1.0 
TIME, t/s 

FtG. 6. Deviations of the temperature rise AT’ obtained by 
simulation of a measurement in n-heptane at 348 K from the 

best fit straight line. 
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Figure 7 displays the fraction Al//1 of the ratio fi for 
n-heptane, n-nonane and n-undecane corresponding 
to the measurements carried out by Menashe and 
Wakeham [7, 121 along isotherms as a function of 
thermal conductivity, over a range corresponding to 
the pressure range 50-500 MPa. The effect of radiation 
is therefore to make the apparent thermal conductivity 
of the fluid as much as 2.5% greater than the true value 
for n-undecane at 348 K, whereas for n-heptane at the 
lowest temperatures and highest densities (highest 
thermal conductivity) the effect is only about 1%. The 
change of the effect with density is a result, primarily of 
the change in thermal conductivity, which is the 
reason for this choice of independent variable in the 
presentation of the data. The plots presented in Fig. 7 
allow thermal conductivity data for the liquids 
considered to be corrected for the effects of radiation 
over the entire density range covered in the measure- 
ments of Menashe and Wakeham [7, 121. 

is general. If more accurate data on the optical 
properties of fluids became available over a range of 
thermodynamic states, it would be possible to perform 
more accurate estimates of the correction and hence 
improve the accuracy of thermal conductivity data for 
liquids. The effects of radiation become more pro- 
nounced for stronger absorbing liquids at least in the 
range studied. Therefore, it would seem, on the basis of 
the present calculations, that any liquid adopted as a 
standard for thermal conductivity should be as weakly 
absorbing as possible, and that the standard tempera- 
ture of reference should be low. 

1. 

2. 

Under otherwise identical conditions, it has been 
found that the fractional correction, M/1, is approxi- 
mately proportional to the cube of the equilibrium 
temperature, 

3. 

4. 
and is approximately linear in the absorption coef- 
ficient K, 

AA/n cc K. 5. 

These observations may allow modest extrapolations 
of the results presented here to other temperatures and 
other liquids. Nevertheless, it is preferable to treat each 
new liquid and each new temperature afresh. 

6. 

The uncertainty in the ratio AkIln is thought to arise 
mainly from the lack of accurate thermophysical and 
optical properties of the liquids under all conditions. 
Although the mathematical model of the radiation 
process and its numerical solution introduce further 
uncertainties, these are thought to be small. The 
overall error in AL/1 is estimated to be no more than 
f200/, for the liquids studied here. Because the 
correction applied to deduce radiation-free thermal 
conductivities amounts to 2.5% at most, the residual 
error in the reported thermal conductivity data after 
correction which can be attributed to this cause, is one 
of +0.5x. 

7. 

6. CONCLUSIONS 

It has been shown that the effects of the absorption 
of radiation in the fluid are significant for the accurate 
measurement of the thermal conductivity of liquids by 
the transient hot-wire technique. On the one hand, the 
calculations presented in the paper show that a 
systematic error of as much as 2.5% can be incurred in 
the measurements if radiation effects are neglected 
entirely. On the other hand, the same calculations 
make it possible to apply a correction so that 
radiation-free thermal conductivities may be derived. 
Although the corrections derived here are specific to 
the liquids considered, the method for their calculation 

FIG. 7. The fraction AA/I. for thermal conductivity measure- 
ments in n-heptane, n-nonane and n-undecane. n-heptane 
-3OSK,---348K;n-nonane-.-.-308K;...348K; 

n-undecane - .- 308 K, - - 348 K. 
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APPENDIX 

The transformation of coordinates 
Integrals of the form 

I= (Al) 

must be evaluated to determine the radiative contribution to 
the heat flux in the energy equation. Here (r, 0, 4) are the 
spherical polar coordinates of a point Pj with reference to 
point Pi of Fig. 2. In terms of the cylindrical polar 
coordinates (rj, sjj, zj) of the same figure, the integral may be 
written 

I= r2f(rj, Q, Z) sin 0 
a(6 0, 4) 
___ dr,dcPdZ (A2) 
4rj, @, Z) 

where 

@ = I/J~ - i/i and Z = z, - zi. (A3) 

Straightforward trigonometry applied to Fig. 2 leads to the 
results that 

r = [rf + rf - 2r,rjcos@ + Z’]‘!’ 

cos e = [r, cos CD - r&r (A4) 

sin 4 = Z/[rT sin’@ + 2’1’ ” 

Evaluation of the Jacobian in equation (A2) then yields 

a@. 8, 4) 

a(rj, Q, Z) 
= rj/[(rf + r2 - 2r,rj cos @ + Zz) 

x (rj’ sin’ @ + Z’)]’ ,’ (A5) 

so that 

I= 
SIS 

3(rj, @, Z) rjdr,d@dZ. (A6) 
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EFFET DE L’ABSORPTION DU RAYONNEMENT SUR LA CONDUCTIVITE THERMIQUE 
MESURES PAR LA METHODE TRANSITOIRE DU FIL CHAUD 

Rkumi-On analyse. les effets de I’absorption du rayonnement par les fluides pendant la mesure de leur 
conductivit% thermique par la m&hode du fil chaud en transitoire. L’Cquation intkgro-diff&entieIle qui 
gouverne la conduction associ&e au rayonnement dans une cellule B fil chaud est simplifiee au moyen d’un 
petit nombre d’hypothtses raisonnables physiquement et elle est rCsolue numtriquement. La solution 
numtrique est employ&e pour diduire l’effet de l’absorption du rayonnement sur l’dl&ation de tempkrature 
du fil pour trois alkanes normaux. L’absorption produit des modifications dans l’dlt%vation de tempirature 
qui sont comparables g la limite de prtcision de sa mesure et n’est done pas discernable directement. 
Nianmoins la contribution du transport radiatif au chauffage transitoire montre que la conductivitt 
thermique d&ermin&e par de telles m6thodes est syst&matiquement frappte d’une erreur de I’ordre de 2,5x B 
75°C. Une procCdure de correction de la conductivitC est d&rite et la facteur est donnl pour n-heptane, n- 
nonen et n-undlcane, dans le domaine de tempkrature 35-75”Cet pour des pressions allant de 0,l i 500 MPa. 

EINFLUSS DER WRRMESTRAHLUNG AUF DIE MESSUNG DER WARMELEITFAHIGKEIT 
MIT DER INSTATIONAREN HITZDRAHTMETHODE 

Zusammenfassung-Es wurde der EinfluB der Strahlungsabsorption in Fliissigkeiten bei der Bestimmung 
ihrer Wlrmeleitfghigkeit mit Hilfe der instationtien Hitzdrahtmethode berechnet. Die vollsta’ndige partielle 
Integral-Ditlerential-cileichung, welche den gleichzeitigen Wgrmetransport durch Leitung und Strahhmg fiir 
das instationlre Verhalten einer Hitzdrahtzelle beschreibt, wurde unter physikalisch verniinftigen Annah- 
men numerisch gel&t. Aus der numerischen LGsung wurde der EinfluB der absorbierten Strahlung auf das 
Ansteigen der Drahttemperatur bei Messungen an drei Normal-Alkanen abgeleitet. Die durch die 
Strahlungsabsorption hervorgerufene anderung des Anstiegs der Drahttemperatur ist vergleichbar mit der 
bestmiiglichen AuflGsegenauigkeit der Messung und deshalb nicht direkt feststellbar. Nichtsdestoweniger 
bedeutet das Vorhandensein des Strahlungsaustausches fiir die nach dieser MeBmethode bestimmten 
W%meleitf%higkeiten einen systematischen Fehler von z.B. 2,5% bei 75°C. Es wird ein Verfahren zur 
Korrektur der WCrmeleitfihigkeiten, welches die Strahlung beriicksichtigt, beschrieben. Die Korrekturfak- 
toren fiir n-Heptan, n-Nonan und n-Undecan, giiltig fiir einen Temperaturbereich von 35-75°C und Driicke 

von 0.1-500 MPa, werden angegeben. 

BJIMXHME IIOI-JIOUEHMX M3JIY’4EHMX HA PE3YJIbTATbI M3MEPEHMfi 
TEl-IJlOIIPOBO~HOCTM HECTAuMOHAPHbIM METOAOM HAl-PETOR HMTM 

AHHmaqHn- npencTaBneH aHam B~AI~HHR nornouleHm AsnyreHm B ~KHDKOCTIIX Ha pe3ynbTaTbl 

H3MepHHii ‘,X TeII,IOnpOBOJ,HOCTH HeCTaUAOHapHbIM MeTOnOM HZWpeTOii HHTH. nOnHO‘ NHTeTpO- 

nH@e&YeHLWaJIbHOeypaBHeHHe B YaCTHMX IlpOrl3BO~HbIX,O~llCbIBaIOUlee OnHOBpeMeHHO rIpOTeKaIOULfe 

"pOUeCCbI Ten,IOnpOBO~HOCTH A H3,Iy',eHWi B BbIneneHHOM o6aeMe TAnKOCTA C HeCTaI,HOHapHO 

HarpeTOi? HHTbIO, npHBeneH0 K 6onee npOCTOMy Btiny C UOMOUbIO HeCKO,IbKIlX @3WIeCKH 060CHO- 

BaHHbIX .lIOIIyUeHHii R peLUeH0 'IHCJIeHHO. qHCJIeHHOe pellIeHAe ACtIOJIbSOBaJIOCb NISI TOTO, qTO6bI 

0npenemiTb mmmHe nornoqetnix Asnyvemn Ha pocT TemepaTypbl HATA np~ A3Mepemirrx Tenno- 
IIpOBOnHOCTH Tp-ZZX HOpManbHbIX anKaHOB. nOKa3aH0, 'IT0 H3MeHeHAe B pOCTe TeMnepaTypbI 38 CWT 

B~HI~HH~I nornouIeHen cpaBHIiMbI c Hamywueii pa3pemaIomefi CnOCO6HOCTbIO A3MepeHG, a n03ToMy 

TpynHOpa3JNHMbI.TeM He MeHee. R3-3a BJIWIHHII JIyWCTOrO nepeHOCa Ha HeCTaUHOHapHbIf, npOUeCC 

Harpeea CHcTeMaTHqecKH nonyqaroTca HeTovHbIe 3HaveHm TennonpoBonHocTH. TaK, nps 75’C 
nOrpeUIHOCTb COCTaBJlfieT 2,5x. npWJIOX’ZH MeTO& C IIOMOLLlbMJ KOTOpOrO MOTH0 yTO'IHHTb LlaHHbIe 

no TennonpoaonHocTA 38 cveT yqera annaHm4 H3nyqeHm. A naH nonpaBorHbG K03+@wieHT nnx 
H-renTaHa, H-HoHaHa R H-uHneKaHa n.m nHana30Ha TeMnepaTyp 0~ 35 no 75’C I( nasnenrtA OT 

0,l no 500 MIIa. 


