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Abstract—The paper presents an analysis of the effects of the absorption of radiation by fluids during
measurements of their thermal conductivity by the transient hot-wire technique. The full integro-partial
differential equation governing the simultaneous conduction and radiation in a transient hot-wire cell is
simplified by means of a small number of physically reasonable assumptions and solved numerically. The
numerical solution has been employed to deduce the effect of radiation absorption on the wire temperature
rise in measurements of three normal alkanes. Absorption of radiation is shown to produce changes in the
wire temperature rise which are comparable with the best available resolution in its measurement and are
therefore not directly discernible. Nevertheless, the contribution of radiative transport to the transient
heating process means that the thermal conductivity derived from such measurements is systematically in
error by as much as 2.5 at 75°C. A procedure whereby thermal conductivity data may be corrected for the
effects of radiation is described and the correction factor given for n-heptane, n-nonane and n-undecane in the
temperature range 35-75°C and the pressures in the range 0.1-500 MPa.

NOMENCLATURE z, axial position [m];
a, radius of inner cylinder [m]; Z, difference of axial positions [m].
A, area of cylinder [m?];
b, radius of outer cylinder [m];
B, dimensionless radius of outer cylinder; Greek symb}c;ls L
C, exp y where vy is Euler’s constant ; % a s.orptn?ty ’ |
C,. heat capacity of fluid at constant pressure 2 ratio o . apparent fo true  therma
[Tkg™ K~1]; conductivity;
dA, surface area element ; O(R),  decay function; .
av volume element : oT, temperature correction [K];
E ’ emissive power iw m=2]; 6T,,  outer boundary correction [K];
E, exponential integral; dTs,  radiation correction [K];
K ’ absorption coefficient [m™']; A4, difference between apparent and true ther-
L, Lagrange polynomial; , mal conductivity; . .
" order of Lagrange polynomial; AT’,  corrected temperature rise of wire [K];
" ’ refractive index - ’ AT,y temperature rise of the fluid in the ideal
N, number of grid points in annulus; AT model [K]; s of the wi .
P successive roots of zeroth-order Bessel w terppgrfxttlx’re rise of the wire [K];
function of first kind; & CmISSIV’l .o . —3
p pressure [MPa]; Ens Planck’s distribution function [W m™3];
q: heat flux per unit length [W m~*]; s angular integration limit [rad];
0, radiant heat flux [Wm™2]; 0, angle of incidence [rad];
Q, radiant heat flux gradient [W m™?]; o, d;menspnless temperature;
0 linearized heat fluxes [W m~?]; ®, dimensionless temperature rise;
~7 b4 . .o 2 -1 .
0, linearized heat flux gradients [W m™3]; o thermal dlffusmt.y.[m 3 ]_’ L1 -1
y radial coordinate [m]; A thermal conductivity [W m~ 'K 1;
R, dimensionless radial coordinate ; Aappr ag&) arcznlthlE?rleal conductivity
R, radial coordinate of grid point for method [W m J; .
of lines A, wavelength of radiation [m];
; time [s]’ 3 fluid density [kgm™?];
,f absolu te’ temperature [K]: a, Stefan-Boltzmann constant
° ’ -2 -47.
v, volume of fluid [m?]; Eiw mf K ]’_
Yo zeroth-order Bessel function of the second 7 ceay unction ; . .
Kind - o, azimuthal angle of spherical coordinate
’ system [rad];
* Author to whom correspondence should be addressed. o, polar angle between two points [rad];
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¥, polar angle in cylindrical coordinates
[rad].
Subscripts
0, equilibrium conditions;
1, inner cylinder;
2, outer cylinder;

A, — dV,, from inner cylinder to volume element;

A, — dV, from outer cylinder to volume element;

A, - dA,, from outer surface to element of inner
surface ;

V — dV,, from bulk of fluid to volume element;;

V — dA,, from fluid to surface element of inner
cylinder.

1. INTRODUCTION

RECENT developments in both the theory [1-4] and
practice [5-8] of the transient hot-wire technique have
brought it to the stage when it offers the most precise
method for the measurement of the thermal con-
ductivity of fluids. Using the most refined instruments
it has been possible to attain a precision of +0.2%, in
the measurements in both gas and liquid phases
[6~13]. However, only in the cases of dilute and
moderately dense gases has it been possible to identify
this precision with the accuracy of the reported
thermal conductivity data [6, 13]. For other fluids,
specifically those which absorb electromagnetic radi-
ation, the theoretical description of the measurement
process has been less than complete, and for such
systems it has been necessary to accept that the
thermal conductivity data may be burdened with a
systematic error of the order of 1% [11, 14].
Because the thermal conductivity of a material can
only be practically determined by the imposition of a
temperature gradient within it, there is, in principle,
always a radiative contribution to the measured total
heat flux. In the case when the material is transparent
to the radiation and is confined between two surfaces
the radiative contribution to the heat flux may be
evaluated independently of the conductive contri-
bution, either in a separate experiment in the absence
of a medium between the two surfaces, or by a
relatively simple calculation [15]. However, in the case
when the fluid absorbs some of the radiation, the
radiative contribution to the heat flux is coupled to the
conductive heat flux through the medium itself and
hence cannot be determined in an experiment in which
the medium is absent. Furthermore, direct calculation
of the radiative heat flux, which depends upon the
instrument employed for the measurement, becomes a
very much more complicated problem. It is likely that
at least some part of the large discrepancies between
thermal conductivity data for absorbing fluids ob-
tained in different types of instrument [16] may be
attributed to the effects of radiative heat transfer.
The majority of studies of the contribution of
radiation to heat transport in absorbing media have
been confined to steady state conditions for parallel
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plate arrangements [17-23]. Even in this relatively
simple case the exact solution of the energy equation
given by [17] is too complicated for routine analysis of
experimental data, although it does confirm the exis-
tence of a significant effect upon thermal conductivity
measurements. On the other hand, approximate treat-
ments such as that of [18] based on the Rosseland
diffusion approximation [20] are not generally quanti-
tatively correct. In the transient hot-wire method the
essential measurement is that of the temperature rise of
a thin wire immersed in the fluid as a function of timne
following the stepwise initiation of a heat flux within it
[1]. By means of a suitable design and a careful choice
of operating conditions [5-7] it is possible to arrange
that the instrument operates in very close accord with
the simplest mathematical treatment of it. Among the
idealizations of this mathematical treatment is the
assumption that the heat transfer from the wire takes
place solely by conduction. In order to account for this,
as well as the other departures of the experimental
arrangement from the ideal, small, additive corrections
must be applied to the observed temperature rises of
the wire so that the data can be interpreted with a
simple working equation [1]. Explicit expressions for
many of these corrections have already been given
[1-4] including that for the radiation heat loss, 6T,
when the fluid is transparent to radiation [1]. In most
instruments used with transparent fluids, this cor-
rection is negligible, amounting to less than 5 x
1079 of the total temperature rise [5]. However, in
the case of absorbing liquids an equivalent expression
for the correction is not available and it cannot be
assumed that the effect is similarly negligible judged on
the evidence for the steady state, parallel plate case.

There have been a number of attempts to carry out
an analysis of the process of simultaneous conduction
and radiation in an absorbing fluid for the transient
hot-wire instrument [21-23]. All of the approaches
have been founded on simplifications of the energy
equation, usually related to somewhat artificial assump-
tions about the optical thickness of the medium at
different radial positions [23]. The predictions of these
approximate analyses have not been confirmed by
subsequent measurements in transient hot-wire
measurements of thermal conductivity [7, 8, 11, 14].
The present paper provides a more rigorous analysis of
simultaneous radiation and conduction in a transient
hot-wire instrument than has been given before. The
analysis is based on a numerical solution of the full
energy equation describing the process. It is intended
to provide a means whereby measurements of thermal
conductivity performed in such an instrument may be
corrected for the effects of radiation, so that the high
precision of the experimental technique may be
translated into a comparable accuracy.

2. THE MODEL
The ideal model of the transient hot-wire instrument
consists of an infinitely long line source of a radial heat
flux, q. initiated at time ¢ = 0, immersed in a fluid of
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infinite extent with temperature independent physical
properties, initially at a temperature T, It is presumed
that all the heat loss from the wire occurs by con-
duction, and it can then be shown that the temperature
rise of the fluid at a radial position r conforms to the
equation [1]:

AT (r t) = 4—:-1- E,(r/axt). 1)

For the small values of r%/kt relevant in most instru-
ments, this reduces to

AT (r 1) = %{-m(m/ﬂcy @)

In practice, the heat source is a thin metallic wire of
radius, g, and finite length, immersed in a fluid with
temperature dependent physical properties, which is
confined in a cylinder of radius b. The wire is also
employed as a thermometer in the measurements and
its temperature rise, ATy, is identified with that of the
fluid in contact with it at the radial location r = a.
Owing to the differences between the real system and
the ideal model of it, the temperature rise ATy, differs
from AT, by a small amount. However, because each
of the departures from the ideal model may be
rendered small by an appropriate design, the cor-
responding corrections may be treated independently
in the formulation of the theory of the method and
viewed as small additive corrections [1].
Thus we write

ATy = ATy, + Y 8T, 3)

where the 8T, represent the various additive cor-
rections. Among these, adopting a notation consistent
with reference [1], 6T denotes the correction to be
applied to the measured temperature rise to eliminate
the effects of radiation. One purpose of the present
analysis is to evaluate the correction 6 T for absorbing
liquids. Because the remaining corrections, d T (i #5),
have already been evaluated [1-4], it is convenient to
define a temperature rise AT", which is the experimen-
tal temperature rise corrected for all effects except
radiation, by the equation

AT = ATy + ) 6T, 4)
i#lS

The model adopted for the determination of the
radiation correction is shown in Fig. 1, which also
defines the cylindrical polar coordinate system em-
ployed. The heat source consists of an infinitely long
cylinder of radius a with negligible heat capacity and
infinite thermal conductivity. The fluid, which has
temperature-independent physical properties, is con-
fined in the annulus between this cylinder and an
infinitely long outer cylinder of radius b. The bounding
surfaces of the fluid are assumed to be grey and the
fluid itself is assumed to be isotropic, grey and non-
scattering. The conductive and radiative heat fluxes are
assumed to be additive and Kirchhoff’'s Law for
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Fic. 1. The model of the transient hot-wire cell adopted for
the determination of the radiation correction.
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emission and absorption of radiant energy by the fluid
and the bounding surfaces is assumed to be valid. In
addition to the effects of radiation, the present model
departs from the ideal by virtue of the finite outer
boundary and the presence of a non-zero diameter
heat source. The inclusion of the latter two features
simplifies the numerical procedures required for a
solution of the problem, and because account may
readily be taken of their effects, it is still possible to
determine the consequences of radiation absorption
alone.

2.1. The energy equation
Applying an energy balance to the elemental volume
of fluid d¥; in Fig. 1, we obtain the equation

(‘}T s '3
pcpgt“ =IVT + Qy gy, + @4 v,

+ Q) gy, — 4K, E.  (5)

The first term on the right of this equation represents
the conductive heat flux gradient whereas the second,
third and fourth terms represent the gradients of the
one-way heat fluxes from the remainder of the fluid
volume, and the inner and outer surfaces of the annulus
respectively, to the volume element. The final term
represents the total outgoing radiative heat flux from
the volume element dV,.

At the surface of the inner cylinder (r=qa) the
boundary condition for the solution of equation (5)
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appropriate to the present model takes the form

q T
na = “}»(“a‘r‘)r:a - O‘1Q,41-.d,4,

= 0 Q) as, + en® aT*a), (6)

r=a t =40

where dA4, is an element of area on the surface of the
inner cylinder and the second and third terms repre-
sent the one-way radiant transfer to this element from
the outer surface and the fluid volume respectively.

At the surface of the outer cylinder we impose the
condition that the temperature remains constant at its
initial equilibrium value

Th ) =Ty O0<t< 0. &)

This is just the same condition that has been employed
to deduce a correction to the ideal model of the
apparatus arising from the presence of a finite outer
boundary in the pure conductive case [1].

The initial condition for the solution of the equation
is provided by the requirement of thermal equilibrium
so that

T =T, t< 0. (8)

Each of the radiative terms in equations (5) and (6) may
be written explicitly using standard procedures [ 24] so
that equation (5) becomes

0<r<bh

eT KK t(r)EdV,
Cp—— = AVAT + | LT J
PP J; nr?
j‘ K({E,+ R, )cos f,7{r}d4,
+ 2
Ay f:4

+ '}‘ Ki(EZ + ﬁz) COoSs ng(r)dAz _ 4KIEI,‘ (9)
Az

nr?

Applying similar methods the boundary condition (6)
may be writien

L ‘2_7:)
2na O Jyey

. J (E,+ R,)cos 8, cos §,7(r)d4,
-0y
A2

7r?

Ea{riK; g.d¥.
-t f _w{ + glnlg’{"{ (10}
v ar
In these equations
(r) = exp (— f Kdr) (11}
0

In addition, #, represents the angle between the
normal to an element, d4,, of the surface of the inner
cylinder and the vector r, whereas 8, is a similar angle
at the element d A4, of the outer cylinder, The symbol R
represents the fraction of energy falling on a surface
element which is not absorbed.
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In order to proceed it is desirable to introduce a
small number of further simplifications into the model.
In each case the additional approximation is con-
sistent with the desire to obtain a small, 1st-order
correction to the ideal model of the transient hot-wire
instrument. Thus, it is assumed that the absorption
coefficient of the fluid is independent of temperature so
that

K.=K;=Kand t{r} = exp — Kr. {12}

First this is consistent with the assumption that the
remainder of the physical properties of the fluid are
temperature independent, and secondly, the tempera-
ture changes involved in measurements are only of the
order of 5 K so that the error introduced should, in any
event, be very small. It is further assumed that the
surface of the outer cyljnder of the instrument is black
sothatz, = a, = |, ﬁz = () and

El ={ -« {Q’/"‘d.ﬂx + Q,’!g‘*d.«d;}‘

Because in practice the thermal conduction wave
from the heat source does not penetrate o the outer
cylinder of the cell, and because most of the radiant
energy is absorbed in the fluid before it reaches the
outer cylinder, this approximation is thought to
introduce a negligible error. Finally, the absorbtivity
and emissivity of the inner cylinder are assumed to be
equal and temperature independent so that

(13)

Introducing these assumptions into the energy equa-
tion we obtain
ar K?* [ Ea(ridy,
pCp—— = AV3T + Mﬂj J»i—z}g—i
at n ly

g =0y = &

K!‘
4+ —

r T Ja,

% [E, + (1=){Qy g, + @ 4yau,)JcosB2(r)dd,

2

0
+ 5{ E, coqs:_m%;t(r)(lA2 _ 4KE, (14)
T Ja, r
where
K { Ea{rycos8,dV,
ana,iswj Ejttr)cos 0V, 1 (15)
Ty r
and
i E,cos 8, cos8,t{r)dA4 i
Qfepdngjn 2 1r2 2 ) 2- {18}
Az

At the same time the boundary condition (6) becomes

q oT ,
P —'l<_> = eQ 4,04,
r =

2na ar

+ Quoga, —1%6T*). (17)

2.2. The radiative contributions to the heat flux
The evaluation of the surface and volume integrals
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Fic. 2, Coordinate systems for the evaluation of the radiant
heat fluxes and their gradients.

which occur in the radiative contributions to the heat
flux is most conveniently performed with the coor-
dinate system defined by Fig. 2. Here {,, z,, ¢ are the
coordinates of point P, in a cylindrical system centered
on the axis of the inner cylinder. On the other hand {r,
9, ¢) are the coordinates of a spherical polar system
centered on the point P,. With the aid of the definitions,

O =y; i (18)
and

Z=1z;—z {19}

which relate the cylindrical coordinates of two points

P; and P, each of the integrals in equations (14)~{17)

may be expressed in terms of the coordinates {r,, Z, ®).

The eguations for the transformation including the

Jacobian 8(r, §, )/0lr,, Z, O} are given in the Appendix.
From equation (15} we obtain

4K (= [® [y
Qv»dm = f f
T Jo Ja Jo

5 Efr;cos® — air{ra)dd?r;ér}dz 20)
rﬁ
where
ro=[r} 4+ a® = 2ar;cos® + 2712, (21)
= cos™* (f’—) 22)
¥

and Fig. 3{a) illustrates a section of the region of the
fluid contributing to the integrals,
The transformation of equation (16) leads to the

result that
4E.b f j

(bcostb — aj(b

Qiyan, =

- acos Oye(r,)dOdZ

4
Ty

(23)
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where
ry = [b* + a® — 2abcos® + 2212, (24)
iz = cos™ ' (a/b), (25)

and Fig. 3(b) illustrates a section of the contributing
region of the outer surface. The flux gradients of
equation (14) may also be written in the same coor-
dinates. Thus the contribution owing to radiation from
the bulk of the fluid at a volume element situated at P,
becomes

! 4K* vx:m Eqlr, }d@rdr}dz
Qeay, = e S

’.

€

(26)

where
re=[r? +1f = 2rpeos®@ + 2712 (27)
#y = cos”? G) (28)

and Fig. 3(c) illustrates a section of the contributing
portion of the fluid.

For transport from the surface of the inner cylinder
to a volume element at P; we find

4K
Qg may, = Wg[Ex + (1 =@y g, + Qtyaa, ]
a)'t(rd)dtbdZ (29)

J’ J"h (r;cos ®—
, dA,
@ R

F1c. 3. The regions of fluid and bounding surfaces contribut-

ing to radiant heat fluxes and heat flux gradients. Volumes of

the fluid contributing are shown hatched, surfaces contribut~

ing are indicated by thick lines. {a) @y 44,5 ®) Q4 ueays
©) @voar: d) Quyaps (€ Qyysays
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where

Fg = [r? + g% — 2ar;cos ® + 22]1;2 (30)

and Fig. 3(d) shows the section of the inner cylinder
contributing to the integrals.

Finally, the contribution from radiative transport to
the volume element at P, from the outer surface A4,,
may be similarly transformed,

, KE,b [ [mutha(b—r,cos O)(r }dPAZ
QA;—-)dV, = 3
n 0 0 Te
(31
where
ro={r? + b* = 2r;bcos® + Z?) (32)

and Fig. 3{e} defines the limits of integration for the
contributing surface of the outer cylinder.
Equation (14), together with the definition

Efr, )y =n*eT*r, 1) (33)

and the preceding results for the radiative flux gradi-
ents is an integropartial differential equation for the
temperature rise of the fluid as a function of time and
position in a transient hot-wire instrument in which
the fluid is absorbing. The solution of this equation,
when compared with the solution for a non-absorbing
fluid, yields directly the effect of radiation on the
system. An analytic solution to equation (14)subject to
the boundary and initial conditions (7), (8) and (17) is
not feasible without further assumptions so that it has
been necessary to obtain a numerical solution.

3. METHOD OF SOLUTION

3.1. Linearization

In order to carry out the numerical solution of the
energy equation we first transform to the dimension-
less variables

® =T/T;, R=r/a and B = b/a. (34)

Secondly, because the energy equation (14) is non-
linear we have found it advantageous to linearize it.
This second procedure is not essential to the process of
obtaining a numerical solution because methods for
solving such non-linear equations are available. How-
ever, the computational effort required for the pre-
sent problem is extremely large. Furthermore, the
linearization is consistent with our aim of attaining a
Ist-order correction arising from the effects of radi-
ation absorption, and is justified by the fact that the
temperature rise in the fluid is typically only a few
degrees Kelvin. Hence, if we define a dimensionless
temperature rise by the equation

AT
6= 7-=0-1

4]

(33%)

then
0«1
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and we can write

0 =1+40 (36)
so that the dimensionless, linearized energy equation
becomes
0 i [0 L] 20
ot pC,a®|8R?  ROR

1 20 A7 A’
+ prT; {QdeVi + Quav, + Qs
— 16Kn%sTHO(R))] (37
whereas the boundary conditions are
q fiic) £a _ ~
= A== -
2T, (&R )R=1 T, [Quz-aa, + Qv aa]
+ dentoaT3B(1), (38)
and
®B)=0, 0<t< =, 39
and the initial condition is
OR)=0, t<0, 1<RKB. (40)

The same procedures may be applied to the one-way
radiation heat fluxes and gradients to yield

~ lano'KT‘é * B
Qv —dd; &
n o Ji Jo

LR OR)[R;cos ® ~ 1]6(R,)dPIR,AZ

3 . @
Q,a;z—»d,a, = 0, (42)
by virtue of boundary condition (39),
16n2K20'T3 x (*B Lyt
0
n o Jt Jo
5 RJG(Rj)é(R;)dd)dedZ @)
R?
~ “ (Mu(R,cos ®—1)d(R,)dDPAZ
Gy, =D J f PRIDIZ 4
0 0 d
and finally
04ar, =0 43)

again because of the boundary condition (39).
In these equations we have employed the definitions

O(R) = exp — KaR, (46)

and
D= ‘L—f [4en*eTEO(1)

+ (=8 @y, + Qus-as)] @7
together with obvious definitions of R;, R;, R,, R, and

R The tilde denotes that the radiation heat fluxes and
gradients have been linearized.
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3.2. Numerical methods

The first step in the numerical solution of equation
(37) involves the conversion of the multidimensional
integrals in the expressions for the radiation heat fluxes
and gradients into algebraic series by means of a
suitable quadrature procedure. For each integral we
have employed Gauss—Legendre quadrature for a
finite interval [25], even for the integration over the
axial coordinate Z which, in principle, extends to
infinity. The latter procedure is necessary to avoid
underflow in the machine calculations at the pivot
points of quadrature formulae for an infinite interval
caused by the rapid decay of the integrand. The finite
upper limit of the integration over the axial coordinate,
Z .o Was selected by numerical experimentation ; it has
been found that a value of

Zim = S0/K,

fim
is generally satisfactory. For the liquids considered in
this study this limit corresponds to a vertical distance
of about Scm.

The application of the quadrature formulae reduces
the energy equation (37} to a linear, partial differential
equation which has been solved by the Method of
Lines [26]. This method involves the conversion of
the partial differential equation to a set of coupled
ordinary differential equations. To implement the
method in this case, the annular space between the two
cylinders is discretized into a number, N, of points R; at
each of which the temperature rise of the fluid at a time
t is denoted by ©r). The function &(R, 1} is then
represented by a series of approximating Lagrange
polynomials in the spatial coordinate, L(R), so that

OuR )= ¥ LIRIB),
where

L{R)= [T (R=R) [] (Ri—=R)), j#i
J=1 j=1

and (m - 1)is the degree of the polynomial, andm < N,
The subscript, a, on the function ® denotes it is an
approximation to the solution (R, t). Because L{R,)
= land L{R}} = 0,j # i, R; # O then

éa(Ris t) = éi(t)

and the polynomial passes through the given data
points. The partial derivatives of ®(R, ) may also be
approximated by the derivatives of the polynomial at
the spatial location R,

20 a@a m ’
(BE)& = <6R >R1 - i=Z1 Li(R)® (1)

26 52(:)3 n
(W> R; (5R2 )Ri - ,Z:l L{(R)® (1)

where the prime denotes differentiation of the poly-
nomial with respect to R. Introduction of these results

and
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into the energy equation (37) at each spatial location
leads to a coupled set of N ordinary differential
equations in the time domain. In the present work, the
fundamental form of the temperature profile in space is
known to be that corresponding to the ideal model for
pure conduction {equation (1)] because the radiative
perturbations are small, Consequently, the grid points
R, for the method of lines have been chosen according
to the scheme

R. = B~ Dav-11
£

in order to obtain a finer grid spacing near to the inner
cylinder which represents the most important region of
the fluid for the effects considered. The coupled
ordinary differential equations obtained by the fore-
going method are stiff and they have therefore been
integrated using an algorithm developed by Gear [27]
and Hindmarsh [ 28], which allows both variable order
of integration and variable step size.

During the integration of the ordinary differential
equationsin the time domain it is necessary to evaluate
the linearized radiant heat fluxes and heat flux gradi-
ents according to the quadrature formulae approxi-
mating the integrals. Because the pivot points of the
Gauss-Legendre scheme employed do not coincide
with the grid adopted for the method of lines it is
necessary at each step to interpolate in the grid to
determine the temperature rise of the fluid at the pivot
points. For this purpose a S-point interpolation
scheme proposed by Akima {297 has been used. Some
of theintegrals contained in the radiant heat fluxes and
their gradients are {ime independent and for these,
which need only be computed once, a 16 point
Gauss-Legendre scheme was used. For the remainder
of the integrals, which must be continually recal-
culated at each step, a 3- or 5-point quadrature was
employed and was found to be sufficiently rapid and
accurate.

3.3. Precision of the numerical solution

For each iterative step in the numerical procedure
outlined above it has been found that a convergence
limit corresponding to a relative error of 107 repre-
sents a satisfactory compromise between accuracy and
the need to avoid machine round-off errors. The
remaining parameters of the numerical method also
represent a compromise between the need to limit the
computation time and the need to maintain sufficiently
high accuracy. Appropriate values of the order of
coupling in the ordinary differential equations, m, and
the number of grid points in the annular space, N, have
been determined by numerical trials. For this purpose
itis desirable to use an analytic solution to the problem
as a reference, because this also allows the accuracy of
the numerical solution to be assessed. The only
analytic solution which is available is that in which the
effects of radiation are negligible, that is, for a model of
the instrument which contains an outer boundary but
in which the fluid is not absorbing. This solution for
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the temperature rise of the fluid at the surface of the
inner cylinder takes the form [1]

61,0 =5~ (48)

where for sufficiently large values of xt/a®, AT, is given
by equation (2). The correction 6T ,, which accounts
for the departures of the apparatus from the ideal
model because of the presence of the outer cylinder is

given by {1]

g ’4&{) * s )
T,=—|in{— =PRI (1 o (p )
5T, m[ (bzci T e ai{’ﬁ?}

(49)

for the large values of b/a characteristic of all
instruments.

In order to compare the numerical solution with
that of equation (48), we have carried out calculations
for a fluid possessing physical properties close to those
of n-heptane. The conditions chosen for the calcu-
lation, 300K and a pressure of 0.1 MPa, are similar to
those employed in recent measurements of the thermal
conductivity of n-heptane, and they and the appro-
priate physical properties of the fluid are collected in
Table 1. In order to simulate conditions in which
radiation plays an insignificant role, both the emis-
sivity of the inner cylinder and the absorption
coefficient of the liquid were set to very small values in

these calculations, but the aigorithm employed for the
calculations was in every respect identical to that
described earlier,

Following a number of trial calculations of this type
[30] with different parameters for the numerical
solution it was determined that third order coupling of
the differential equations combined with 301 grid
points in the annular space led to adequate precision.

Figure 4 displays the deviations between the analytic
solution of equation {48} and the numerical solution
for these parameters, in the range of times 0.1-1.0s of
interest experimentally. The deviation is typically only
+0.02%,. This agreement is taken as evidence of the
precision of the calculation and because the algorithm
employed is identical when radiation effects are signi-
ficant, it is expected that the accuracy of the results will
be similar. Unfortunately, no more direct confirmation
of this contention is possible.

4. RESULTS

In order to relate the present calculations of the
effect of radiation absorption asclosely as possible to a
real experiment, we have applied the algorithm de-
scribed ecarlier to a transient hot-wire apparatus
employed for thermal conductivity measurements on
three alkanes, n-heptane, s-nonane and n-undecane {7,
12]. This particular apparatus consists of a platinum
wire of radius @ = 3.9 um on the axis of a cylinder of
radius b = 4.95mm, and was used at the three

Table 1. Physical properties of the alkanes and values of the experimental parameters employed for the evaluation of the effect
of radiation absorption

To/K n AmWm K p/kgm™? C/lkg ' K™! K/m™! ¢/Wm™?t
n-heptane, 50 MPa
300 1.385 1282 697 2252 1070 10
308 1.385 1440 716 2826 1070 0.66
323 1.385 1383 704 2826 1070 0.64
348 1.385 1371 698 2826 1070 0.63
n-heptane, 500 MPa
308 1.385 2335 846 2826 1070 0.66
323 1.385 2333 841 2826 1070 0.64
348 1.385 2325 834 2826 1070 0.63
n-nonane, 50 MPa
308 1.405 146.1 743 2200 120 0.66
323 1.403 1436 724 2200 1120 0.64
348 1405 1413 727 2200 1120 0,77
s-nonane, 500 MPa
308 1.405 2313 870 2200 1120 0.66
323 1408 2314 866 2200 1120 0.64
348 1.405 2318 859 2200 1120 0.77
n-undecane, 50 MPa
308 1418 147.8 760 2250 1150 0.89
323 1418 146.0 753 2250 1150 0.86
348 1418 140.8 739 2250 1150 0.84
n-undecane, 500 MPa
308 1.418 2153 864 2250 1150 090
323 1.418 2175 863 2250 1150 0.87
348 1418 214.6 855 2250 1150 0.84

For alf calculations: inner cylinder radius, a = 3.9 gm; outer cylinder radius, b = 495 mm; wire emissivity, ¢ = 0.037.
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F1G.4. Deviations of the numerical solution from the analytic
solution for 3rd-order coupling with 301 points.

temperatures 35, 50 and 75°C, over a range of pressures
from 50-500 MPa.

In order to estimate the effects of radiation absorp-
tion on these measurements, we have used the
foregoing algorithm to compute &(1, ¢) for several sets
of conditions representative of those encountered in
the measurements. For this purpose, we have em-
ployed heat fluxes, g, in the calculations similar to
those used in the measurements, as well as the physical
properties of the alkanes appropriate to the thermody-
namic state involved. The properties of the fluids and
the characteristics of the instrument are all collected in
Table 1. Among the physical properties of the fluids
required for the calculation are the refractive index and
an absorption coefficient, K. For the former we have
employed values measured at 25°C in all cases. For the
latter, we have employed a mean absorption coef-
ficient, defined by the relation

1 f VAT
K=—-—-h|"*— — (50)
L 0
j sadA

4]

and determined directly at room temperature in an i.r.
spectrophotometer [30]. This mean absorption coef-
ficient is not the same as the more usual Planck mean
extinction coefficient [24] but is appropriate for the
present purpose if the fluids are treated as grey. Values
for K and n under other conditions are not available, so
that those appropriate to ambient conditions have had
to be used in other thermodynamic states.

The effect of radiation absorption on the wire
temperature rise is quantified by the definition

8Ts = AT,y — 6T, — AT. (51)

Here, AT 4 is the temperature rise of the inner cylinder
according to the ideal model of the instrument [equa-
tion (2)], 6T, is the correction owing to the outer
boundary of the fluid [equation (49)] and AT =
To®(1, t) is the computed temperature rise when
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FiG. 5. The temperature correction, 6T s, owing to radiation
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radiation absorption occurs. According to this de-
finition 6T 5 can also be identified as the correction to
be added to the temperature rise observed experimen-
tally in an absorbing fluid to account for the effects of
the absorption and thereby recover the ideal tempera-
ture rise AT 4.

Figure 5 contains a plot of 8 T'5(¢t) for the simulation
of measurements in n-heptane at three temperatures.
In each case the total temperature rise of the wire was
of the order of 5 K. The effect of radiation is to produce
a positive value of 6T, increasing with time in an
approximately linear fashion to about 0.007K or
0.15% at a time of 1s. Similar, but slightly greater
effects are found in the cases of n-nonane and n-
undecane. The effects of radiation absorption on the
fluid temperature are therefore small and there is no
sign of the rather large effects suggested by the work of
Saito and Venart for toluene {23]. In general, the effect
increases with absolute temperature and with the
absorption coefficient of the liquid in the range studied.
Despite the small magnitude of the effect of radiation
on the temperature rise of the wire, its systematic
nature has significant consequences for the measur-
menent of thermal conductivity which are discussed in
the next section.

5. APPLICATION TO TRANSIENT HOT-WIRE
MEASUREMENTS OF THERMAL CONDUCTIVITY

The thermal conductivity of a fluid is determined
from a set of data points (ATw(¢,), t;) obtained in a
transient hot-wire measurement by application of

linear regression to the corrected data set (AT ,4(t;),
In t;) where {1, 6]

AT,y = ATy + Y 0T, (52)
i
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and, according to equation (2),

A= 4% [1/(dAT,y/d In 1)]. (53)
If the compilete set of corrections 8T is available this
procedure should yield the true thermal conductivity
of the fluid at an appropriate reference temperature
[1]. Thus, in principle, the correct application of the
preceding results would be to compute the correction
8T 5 for each experimental point for each run and to
combine the results with the measurements of ATy
according to equation (52). However, the enormous
computational effort required (about 10° words of
storage and 750s of C.P.U. time on a CDC 7600
computer for a single run) this is evidently an impracti-
cal approach. Thus, whereas the present calculations
of 6T s may serve as a test of later and simpler analytic
solutions to the problem, they cannot be applied
directly to the correction of experimental observations.

In order to discuss alternative methods of applying
the radiation correction, we first consider the magni-
tude of the effect in a different manner. According to
equation (4) AT’ represents the temperature rise of the
wire corrected for all departures from the ideal model
except that arising from radiation. If the set of data
points (AT'(z;}, In t;) obtained in an experiment are
subjected to linear regression, then the time de-
pendence of 8T 5(¢) leads to a small curvature in the line
AT vsIn 1, Figure 6 contains a plot of the deviations of
the points (AT'(z;), In t;} from a straight line fitted to
data generated by the simulation of a measurmeent in
n-heptane at 348 K. The fit has been carried out over
the range of times 0.1-1.0s usually employed in
measurements. The systematic curvature of the de-
viation plot corresponding to the curvature of the line
{AT’ vs In r)can be seen to amount to only 0.05% of the
temperature rise even in this worst case. Because, in
even the most precise thermal conductivity instru-
ments, the resolution of the temperature rise measure-
ments is not better than +0.05%, such a curvature
could not be discerned experimentally. This finding is
consistent with the experimental observations of
Menashe and Wakeham [7]. On the other hand, if the
average slope of the plot of AT" vs In t is obtained from
a least-squares fitted straight line the apparent thermal
conductivity, defined by the equation,

e = 1 [1/AAT/d In )],

is found to be

Ao, =1398mWm I K™!

app

(54)

which is greater by 1.9% than the true value listed in
Table 1. It must therefore be concluded that although
the systematic effect of radiation on the wire tempera-
ture rise cannot be distinguished from the random
error of measurements it introduces a systematic error
into the thermal conductivity derived.

These observations suggest that the correction to
the data to account for radiation absorption should be
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applied to the slope of the fitted straight line, or
equivalently, the thermal conductivity, rather than to
the individual temperature rises. We therefore define a
ratio of the apparent and real thermal conductivities
as

(35)

Here, 4,,, is the apparent thermal conductivity of the
fluid determined according to equation (54} and A the
true thermal conductivity. In general the ratio f
depends upon the characteristics of the instrument
employed for the measurements, such as its dimen-
sions, the emissivity of the material of the inner
cylinder, the heat flux employed for the measurements,
and the time range over which measurements are
made. In addition, the ratio depends upon all the
physical properties of the fluid, for example, the
thermal conductivity, density, heat capacity, refractive
index and the absorption coefficient as well as upon the
absolute temperature of the measurement.

For one particular experimental installation, the
number of instrumental variables which need to be
considered is reduced to just the heat flux and the time
range employed. In practice, for any particular liquid,
measurements along an isotherm as a function of
density are generally carried out at a constant heat flux
and in the same range of times so that calculations of B
need only be performed to account for the varying
physical properties of the fluid along each isotherm.
Furthermore, because there is very little information
available concerning the refractive indices and absorp-
tion coefficients of liquids except under ambient
conditions the only recourse is to maintain these values
constant. Thus the best that can be done at presentisto
compute the ratio § for each liquid to be studied at
each isotherm as a function of thermal conductivity or
equivalently density. If the calculations are restricted
to the minimum set of those at the extremes of the
density range along each isotherm for each liquid this
procedure reduces the computational effort required
considerably and brings it within practical bounds.
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F1G. 6. Deviations of the temperature rise AT’ obtained by
simulation of a measurement in n-heptane at 348 K from the
best fit straight line.
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Figure 7 displays the fraction A4/ of the ratio § for
n-heptane, n-nonane and n-undecane corresponding
to the measurements carricd out by Menashe and
Wakeham [7, 12] along isotherms as a function of
thermal conductivity, over a range corresponding to
the pressure range 50—500 MPa. The effect of radiation
is therefore to make the apparent thermal conductivity
of the fluid as much as 2.5% greater than the true value
for n-undecane at 348 K, whereas for n-heptane at the
lowest temperatures and highest densities (highest
thermal conductivity) the effect is only about 1%/. The
change of the effect with density is a result, primarily of
the change in thermal conductivity, which is the
reason for this choice of independent variable in the
presentation of the data. The plots presented in Fig. 7
allow thermal conductivity data for the liquids
considered to be corrected for the effects of radiation
over the entire density range covered in the measure-
ments of Menashe and Wakeham [7, 12].

Under otherwise identical conditions, it has been
found that the fractional correction, A4/ is approxi-
mately proportional to the cube of the equilibrium
temperature,

AAJA o T}

and is approximately linear in the absorption coef-
ficient K,

AL« K.

These observations may allow modest extrapolations
of the results presented here to other temperatures and
other liquids. Nevertheless, it is preferable to treat each
new liquid and each new temperature afresh.

The uncertainty in the ratio A4/4 is thought to arise
mainly from the lack of accurate thermophysical and
optical properties of the liquids under all conditions.
Although the mathematical model of the radiation
process and its numerical solution introduce further
uncertainties, these are thought to be small. The
overall error in AJ/4 is estimated to be no more than
+20% for the liquids studied here. Because the
correction applied to deduce radiation-free thermal
conductivities amounts to 2.5%, at most, the residual
error in the reported thermal conductivity data after
correction which can be attributed to this cause, is one
of +0.5%.

6. CONCLUSIONS

It has been shown that the effects of the absorption
of radiation in the fluid are significant for the accurate
measurement of the thermal conductivity of liquids by
the transient hot-wire technique. On the one hand, the
calculations presented in the paper show that a
systematic error of as much as 2.5% can be incurred in
the measurements if radiation effects are neglected
entirely. On the other hand, the same calculations
make it possible to apply a correction so that
radiation-free thermal conductivities may be derived.
Although the corrections derived here are specific to
the liquids considered, the method for their calculation
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is general. If more accurate data on the optical
properties of fluids became available over a range of
thermodynamic states, it would be possible to perform
more accurate estimates of the correction and hence
improve the accuracy of thermal conductivity data for
liquids. The effects of radiation become more pro-
nounced for stronger absorbing liquids at least in the
range studied. Therefore, it would seem, on the basis of
the present calculations, that any liquid adopted as a
standard for thermal conductivity should be as weakly
absorbing as possible, and that the standard tempera-
ture of reference should be low.
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APPENDIX

The transformation of coordinates
Integrals of the form

1=Jf J‘f(r, 0, pydv

must be evaluated to determine the radiative contribution to
the heat flux in the energy equation. Here (r, 6, ¢) are the
spherical polar coordinates of a point P; with reference to
point P; of Fig. 2. In terms of the cylindrical polar
coordinates (7}, ¥, z;) of the same figure, the integral may be
written

(Al)

~ ) 00,6, 9) ,
I = jﬁ jr ]'(rj, ®, Z)sin 8 3, @, 2) drd®dZ (A2)

where
‘D:d/j—l/’i and Z =z; — z; (A3)

Straightforward trigonometry applied to Fig. 2 leads to the
results that

r=[r} +r? = 2rrcos® + Z*]'?
cosd = [r,cos ® ~ r,]/r (Ad)
sin ¢ = Z/[r? sin’® + Z*]'7

Evaluation of the Jacobian in equation (A2) then yields

ar, 6, ¢) P
L 2T = + 1 = 2rr,cos® + 27
ar, ®, Z) /03 i )
x (r}sin?® + ZH)]'2  (AS)
so that

(A6)

1= j f J fir;, @, Z)rdr d0dZ.
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EFFET DE L’ABSORPTION DU RAYONNEMENT SUR LA CONDUCTIVITE THERMIQUE
MESURES PAR LA METHODE TRANSITOIRE DU FIL CHAUD

Résumé-—On analyse les effets de I'absorption du rayonnement par les fluides pendant la mesure de leur
conductivité thermique par la méthode du fil chaud en transitoire. L’équation intégro-différentielle qui
gouverne la conduction associée au rayonnement dans une cellule a fil chaud est simplifiée au moyen d’un
petit nombre d’hypothéses raisonnables physiquement et elle est résolue numériquement. La solution
numérique est employée pour déduire l'effet de I'absorption du rayonnement sur I’élévation de température
du fil pour trois alkanes normaux. L’absorption produit des modifications dans I’¢lévation de temperature
qui sont comparables a la limite de précision de sa mesure et n’est donc pas discernable directement.
Néanmoins la contribution du transport radiatif au chauffage transitoire montre que la conductivité
thermique déterminée par de telles méthodes est systématiquement frappée d’une erreur de 'ordre de 2,59, a
75°C. Une procédure de correction de la conductiviteé est décrite et la facteur est donné pour n-heptane, n-
nonen et n-undécane, dans le domaine de température 35-75°C et pour des pressions allant de 0,1 a 500 M Pa.

EINFLUSS DER WARMESTRAHLUNG AUF DIE MESSUNG DER WARMELEITFAHIGKEIT
MIT DER INSTATIONAREN HITZDRAHTMETHODE

Zusammenfassung-—Es wurde der Einflu@3 der Strahlungsabsorption in Fliissigkeiten bei der Bestimmung
ihrer Warmeleitfihigkeit mit Hilfe der instationédren Hitzdrahtmethode berechnet. Die vollstindige partielle
Integral-Differential-Gleichung, welche den gleichzeitigen Warmetransport durch Leitung und Strahlung fiir
das instationédre Verhalten einer Hitzdrahtzelle beschreibt, wurde unter physikalisch verntinftigen Annah-
men numerisch geldst. Aus der numerischen Losung wurde der Einflul3 der absorbierten Strahlung auf das
Ansteigen der Drahttemperatur bei Messungen an drei Normal-Alkanen abgeleitet. Die durch die
Strahlungsabsorption hervorgerufene Anderung des Anstiegs der Drahttemperatur ist vergleichbar mit der
bestmoglichen Auflosegenauigkeit der Messung und deshalb nicht direkt feststellbar. Nichtsdestoweniger
bedeutet das Vorhandensein des Strahlungsaustausches fiir die nach dieser MeBmethode bestimmten
Wirmeleitfahigkeiten einen systematischen Fehler von z.B. 2,5% bei 75°C. Es wird ein Verfahren zur
Korrektur der Wiarmeleitfahigkeiten, welches die Strahlung beriicksichtigt, beschrieben. Die K orrekturfak-
toren fiir n-Heptan, n-Nonan und n-Undecan, giiltig fiir einen Temperaturbereich von 35-75°C und Driicke
von 0,1-500 MPa, werden angegeben.

BJIMSHUE MNOIJIOIEHUSA U3JTYUEHUSA HA PE3VJIbTATbI U3MEPEHUIA
TEMNJOMPOBOAHOCTU HECTALIUOHAPHBIM METOJIOM HAT'PETOW HUTHU

Aunnotaums — [lpeacTaBieH aHajiM3 BIHAHUA MOIJIOLUEHMS HM3JIy4E€HHS B XKHIKOCTAX HAa PE3Y/IbTAThI
H3MEPEHHH HMX TEMJONPOBOAHOCTH HECTAllHOHAPHBIM METOAOM Harpetoit HuTH. [losiHoe uHTerpo-
nubdepeHunanbHOE ypaBHEHHE B YACTHBIX POU3BO/HBIX, ONUCHIBAIOLLEE OHOBPEMEHHO MPOTEKAIOLLME
NpOLIECCHl  TEIIONPOBOAHOCTH M H3JIy4€HHS B BBIICJICHHOM OOBEME XHIKOCTH C HECTALHOHAPHO
HarpeToil HHUTbIO, NPUBEACHO K DoJice NPOCTOMY BHAY C MOMOUIBIO HECKOJBLKHX (hU3MuecKH 0BOCHO-
BaHHBIX JOMYIIEHHA WM PELIEHO YHCIEHHO. YHCICHHOE peLIeHHE HUCHOJb30BANOCh IS TOro, YTOOBI
ONpele/uTh BJIHSHHE NOIJIOIICHHA H3JIYYEHHS Ha POCT TEMIIEPATYPhl HUTU NPH M3MEPEHHSX TeEIIO-
NpPOBOJHOCTH TPeX HOPMasbHbIX ankaHoB. [10ka3aHO, YTO M3MeEHEHHE B POCTE TEMIEPATYPHL 3a CYeT
BJIHAHHUA NOTJIOLIEHHUS CPAaBHUMBI C Hau/y4lIeH pa3pelaloueif cnocoGHOCTBI0 U3MEPEHHH, a TOITOMY
TPYAHOPa3JHYHMBL. TeM He MeHee, H3-3a BJIMSHHUA JIYYHCTOrO NEPEHOCA HA HECTALMOHAPHLIN Mpouece
HAarpeBa CHCTEMATHYECKH TOJYYAIOTCA HETOYHBIE 3HA4Y€HHs TemonpoBoaHocTH. Tak, mpu 75°C
NOrpelHocThL coctanaser 2,5, . Ipeanoxker METO, ¢ MOMOIIBIO KOTOPOrO0 MOXHO YTOYHHTb JaHHbIE
N0 TEMIONPOBOAHOCTH 33 CYET Y4YeTa BIMAHUA W3JIYHEHHs, M [aH [ONPaBOYHLINA KO>pPUUHMEHT ans
H-TENTaHa, H-HOHAHA H H-WHAEKAaHa 1 ;Adana3oHa Temmnepatyp ot 35 no 75°C v gasienuit or
0,1 no 500 MIla.
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